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Abstract. The purpose of this survey paper is to recall the major benchmarks
of the theory of linear extremal problems in Hardy spaces and to outline the
current status and open problems remaining in Bergman spaces. We focus on
the model extremal problem of maximizing the norm of the linear functional
associated with integration against a polynomial of �nite degree, and discuss
known solutions of particular cases of that problem. We examine duality
and its application in both Hardy and Bergman spaces. Finally, we discuss
some recent progress on the �niteness of the Blaschke product of the extremal
solution in Bergman spaces.

1. Introduction and Historical Remarks

Solving extremal problems has been one of the major stimuli for progress in
complex analysis, starting with the Schwarz lemma in the late 19th century, fol-
lowed by work on coe�cients of bounded analytic functions by C. Carath�eodory
and L. Fej�er, Landau, Szasz, and others. At the end of the First World War, F.
Riesz considered a best approximation problem in the Hardy spaceH 1, and in
1926, Szasz associated this problem with a dual problem inH 1 : This duality was
rediscovered by Geronimus and, in a more general framework, by Krein in 1938.
Extremal problems in multiply connected domains were studied by Grunsky (1940),
Heins (1940), Robinson (1943), Goluzin (1946), and Ahlfors (1947). Macintyre and
Rogosinski (1950) gave a detailed survey of results related to extremal problems
involving coe�cients of functions in all Hardy classes. Systematic use of duality
in linear extremal problems for analytic functions started with S. Ya. Khavinson
(1949) and independently Rogosinski and Shapiro (1953). Further studies were
undertaken by Bonsall, Royden, Read, Adamyan, Arov, Krein, Walsh, among oth-
ers. For a full account of the history of the development of extremal problems and
references, see [18, pp. 51{57].

Work on Bergman spaces began with Ryabych in the early 1960s, who started
the investigation of the existence and regularity of solutions ([21, 22]). In 1991,
Osipenko and Stessin ([19]) solved an explicit optimization problem in Bergman
spaces involving linear combinations of the value of a function and its derivative
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at a particular point in the disk. The theory of contractive divisors in Bergman
spaces, initiated by Hedenmalm ([7]), followed by Duren, D. Khavinson, Shapiro
and Sundberg ([2, 3]), prompted a burst of activity in Bergman spaces which
gave insight into the structure of the z-invariant subspaces of Bergman spaces.
These developments are recorded in two books on Bergman spaces ([4, 8]). In
1997, D. Khavinson and Stessin made a deeper study of linear extremal problems
in Bergman spaces ([9]). Ferguson gave a simpler proof of Ryabych's regularity
results and generalized them in 2009 and 2010 ([5]). The paper [26] contains a nice
discussion of results on extremal problems in Bergman spaces.

The purpose of this survey is to recall the major benchmarks of the theory in
Hardy spaces and to outline the current status of developments in Bergman spaces
as well as the obstacles that still remain there. The plan of the paper is as follows:
we begin in Section 2 by de�ning Bergman spaces, state a model extremal problem,
and investigate the existence and uniqueness of extremals. In Section 3, we give
examples and known solutions of that extremal problem in special cases. Section
4 discusses the Duality Theorem, and in Section 5, we apply duality to see how
to get the solutions in Hardy spaces. In Section 6, we tackle the Bergman space
case, discuss the di�culties and examine the connection with partial di�erential
equations. In Section 7, we give a proof of a new result that the Blaschke product
of the extremal solution for Bergman spacesAp for p close to 2 is �nite.

2. A Model Extremal Problem in Bergman Spaces

Let us begin by examining a model extremal problem in the Bergman space.

Definition 2.1. For 0 < p < 1 ; de�ne the Bergman space as

Ap =

(

f analytic in D :
� Z

D
jf (z)jpdA(z)

� 1
p

=: kf kA p < 1

)

;

where dA(z) = 1
� dxdy denotes normalized area measure in the unit diskD; z =

x + iy:

Consider the following model extremal problem: Fix 1 � p < 1 : Given a
non-zero polynomial

! (z) =
NX

k=0

ak zk ;

describe the extremal solutions of the problem:

(2.1) � p := sup
�

Re
� Z

D
f (z)! (z) dA(z)

�
: kf kA p � 1

�

or, equivalently,

(2.2) sup

(

Re

 
NX

0

ck f (k ) (0)

!

; ck =
ak

(k + 1)!
; kf kA p � 1

)

:

Solving Problem (2.1) is equivalent to solving the following problem:

(2.3) inf
�

kF kA p :
Z

D
F !dA = 1

�
;

since it is easily checked thatF � is a solution to (2.3) if and only if f � is a solution
to (2.1), where F � = f � ==71174 0 l S
Q
BT
/F34 9.9626 T2ck7or 0
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For 1 � p < 1 ; if f Fn g is a sequence ofAp functions approaching the in�mum
in (2.3), then their Ap norms are bounded, and thus, thinking of these functions as
linear functionals on Aq for 1=p+ 1=q = 1 ; by the weak* compactness of bounded
sets in Ap; there exists a function F � 2 Ap and a subsequenceFn k of Fn such that
Fn k approachesF � weak*. In particular,

1 =
Z

D
Fn k !dA !

Z

D
F � !dA;

and therefore Z

D
F � !dA = 1 ;

and of course, Fn k ! F � pointwise. Finally, by Fatou's theorem, kF � kA p �
lim inf kFn k kA p ; and therefore

kF � kA p = inf
�

kF kA p :
Z

D
F !dA = 1

�
;

as desired.
If p = 1 ; the argument is similar but slightly more delicate, since to use weak*

compactness, we must think ofA1 as a subset of the set of complex measures on
D. In this case, for a sequencef Fn g of A1 functions approaching the in�mum in
(2.3), the measuresFn dA form a bounded sequence of measures on the disk, and
therefore, by weak* compactness of bounded measures onD, there exists a measure
d� � such that some subsequenceFn k dA approachesd� � weak*, that is

Z

D
Fn k fdA !

Z

D
fd�;

for every f continuous in D. We now appeal to a version of the F&M Riesz theorem
for A1 proved by H. Shapiro ([23, 24]), which can be stated as follows.

Theorem 2.2. Let 
 be any bounded open set with smooth boundary, and
let M (
) be the Banach space of bounded complex measures on
 , and suppose
f n 2 A1(
) is a sequence of functions such thatf n dA ! d� weak*, for some
� 2 M (
) : Then there existsf 2 A1(
) such that d� = fdA:

Here, A1(
) is naturally de�ned as the space of integrable analytic functions
in the domain 
 : Note that in the original statement of this theorem, the domain

 is allowed to have non-smooth boundary points, and then the limit measure is
of the form fd� + d�; where � a singular measure supported on these non smooth
boundary points. See pp. 75 { 76 of [24] for details.

Now, getting back to the proof of existence, we see that by Theorem 2.2 applied
to D, the measure� � in question is absolutely continuous, and therefore, there exists
a function F � such that the measuresFn k dA approach F � dA weak*. The rest of
the argument is the same as forp > 1; since! is continuous.

Finally, the Bergman spacesAp are strictly convex for all 1 � p < 1 ; (see,
for example, [4, pp. 28{29]), which implies that there can only be one element
of minimal norm satisfying

R
D F !dA = 1. Therefore the solution to Problem 2.3

and therefore to Problem 2.1 is unique. Note that for 1< p < 1 ; the argument
showing existence and uniqueness of an extremal for the model problem considered
here immediately extends to! 2 Aq, for 1=p+ 1=q= 1 :

The main thrust of this work is to study the smoothness properties of the
extremal functions. It is always expected that the solution of a \nice" extremal
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Example 3.5. Problems of the type considered in Examples 1 through 4 are
connected to what are often called Carath�eodory-Fej�er type problems. An impor-
tant example is the problem of �nding, for given j� j j < 1 for
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product to Cnf 0g: Moreover, at z = 0, the singularity is given by the behavior of !;
and hence is a pole of orderN;
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where u� 2 W 1;q
0 . Now set v(z) := u� (z) + 
( z); 
( z) :=

Rz
0 ! (� )d�; so that

@v
@�z

= �
jf � jp

f � :

Then v solves thenonlinear boundary value problem:

(6.4)
@
@z

(jvz jq� 2vz ) = 0 in D;

v = 
 on T:

By results of Ch. Morrey, O. Ladyzhenskaya, and N. Uraltseva (see the discussion
in [9] and [13, 14, 15, 10 ]), the unique solution v of (6.4) belongs toC1+ � (D); � =
� (q). Since

f � = � q� 1 jvz jq

vz
;

we get that f � 2 Lip( ; D);  =  (p): (See [9] for details.)

Remark 6.3. For values ofp in any compact subset of (1; 1 ); the corresponding
extremals f � can all be taken to be Lip(;

0 )
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The problem of showing that the Blaschke factor has at mostN terms, or,
even, indeed, is �nite, still remains. We will discuss this more in the next section.
Notice, though, that instead of Problem (6.1), we can consider the problem with
! a rational function, to get point evaluations at points other than the origin.
More speci�cally, given ! (z) :=

P N
k=1

ak
(1 � wk z)2 ; jwk j < 1; a linear combination of

Bergman reproducing kernels, our problem becomes that of �nding the extremal
solutions to

(6.7) sup

(

Re

 
NX

1

ak f (wk )

!

; jwk j < 1; kf kA p � 1

)

:

Then the results of Khavinson and Stessin ([9]), analogous to Theorem 6.1, imply
that

f � (z) = CB(z)
2N � 2Y

j =1

(1 � � j z)2=p
NY

1

(1 � wj z) � 4=p ;

where C is a constant, j� j j � 1; j = 1 ; � � � ; 2N � 2; are constants and the zeros of
the Blaschke product B may only accumulate to those� j that lie on T.
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Therefore, there existsN such that for n � N ,

(7.1) Re
� Z

D
g! dA

�
> Re

� Z

D
f n ! dA

�
+ "=2:

Now g is continuous in the closed unit disk, and therefore forpn ! p, the
functions jgjpn are bounded above by some constant, and therefore (by the bounded
convergence theorem),

 pn
n :=

Z

D
jgjpn dA !

Z

D
jgjp dA = 1 :

Note that the functions g=n have norm 1 in Apn .
Since n ! 1 and by (7.1), there existsM such that for m � M and for n � N ,

1
 m

Re
� Z

D
g! dA

�
> Re

� Z

D
f �

n ! dA
�

+ "=4:

Choosing a large enoughn = m satisfying this inequality leads to a contradiction
of the extremality of f �

n .
Therefore, we must indeed have thatg = f �

p , as desired. �

Note that the hypothesis in Lemma 7.2 that the functions f �
pn

converge uni-
formly to f in the closed disk is stronger than what is really necessary for the proof:
what is required is that the measuresf �

pn
dA converge weakly tofdA:

Corollary 7.3. For 1 < p < 1 ; � (p) is a continuous function of p.

Proof. If pn ! p, then, by the remark after the statement of Lemma 6.2, the
functions f �

pn
are all in Lip( ; D) for the some ; and therefore form a uniformly

bounded and equicontinuous family. Therefore, by the Arzela-Ascoli theorem, there
exists a subsequencef �

pn k
that converges uniformly in D to some function f . By

Lemma 7.2, f = f �
p : Therefore, by the bounded convergence theorem,

Z

D
f �

pn k
! dA (z) !

Z

D
f �

p ! dA (z):

Taking real parts, we get that � (pn k ) ! � (p). But since the function � is monotone,
� (pn ) ! � (p). �

Theorem 7.4. If ! has no zeros on the boundary of the disk, then there exists
Delta > 0 such that if jp� 2j < Delta; the extremal function f �

p has at mostN zeros
in D.

Proof. If p = 2 ; then we know the solution is f �
2 = !; and ! has at most N

zeros in the unit disk, because it is a polynomial of degreeN .
First note that the extremal functions cannot have zeros that accumulate inside

the unit disk (otherwise they would be identically zero) and therefore the zeros of
the extremals can only accumulate to the boundary of the disk.

Let us �rst show that there exists Delta such that for p in a Delta neighborhood
of 2; f �

p has a �nite number of zeros. Suppose not. Then there exists a sequence
pn ! 2 such that f �

pn
have in�nitely many zeros in a compact neighborhood of the

boundary of the disk. These zeros must have an accumulation point, and by the
previous remark, this accumulation point must be on the boundary of the disk.

As in the proof of Corollary 7.3 and using Theorem 6.1, by passing to a subse-
quence if necessary, thef �

pn
converge uniformly in D to ! by Lemma 7.2. But then
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