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Abstract. This paper surveys a large class of nonlinear extremal problems in
Hardy and Bergman spaces. We discuss the general approach to such problems
in Hardy spaces developed by S. Ya. Khavinson in the 1960s, but not well
known in the West. We also discuss the major di–culties distinguishing the
Bergman space setting and formulate some open problems.

1. Introduction

Solving extremal problems has been one of the major stimuli for progress in com-
plex analysis, starting with the Schwarz lemma, on to the celebrated problems of
Carath¶eodory-Fej¶er, Kakeya, Landau, etc.., (see the historical notes in [14], pp.
51-54 and pp. 110-112), and flnally to general linear problems in Hardy spaces.
Since the introduction of methods of functional analysis (the Hahn-Banach the-
orem) in the study of linear extremal problems in analytic function spaces by
S. Ya. Khavinson in 1949 ([13]) and, independently, by Rogosinski and Shapiro
in 1953 ([25]), the theory of extremal problems in Hardy spaces has achieved a
signiflcant level of elegance and clarity (cf. [7], Ch. 8).

Recently, substantial progress has occurred in the twin theory of linear extremal
problems in Bergman spaces (see [12, 8, 9] and the references cited there). In this
brief survey we are mostly concerned with the problems that are not covered by
the elegant umbrella of clean and simple methods of functional analysis, namely,
non-linear extremal problems. More precisely, we consider here some well-known
basic extremal problems such as flnding the maximum value of a simple linear
functional, but posed for non-vanishing functions in either Hardy or Bergman
spaces.

The latter set of functions is obviously non-convex, and accordingly, new methods
are required to solve problems in this new setting. A celebrated example of a
problem that is still far from being solved is the Krzy_z conjecture for bounded
non-vanishing analytic functions. Namely, if we consider the family F consisting
of all non-vanishing, bounded analytic functions f(z) =

P∞
k=0 akzk such that
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|f(z)| ≤ 1 for |z| < 1; the Krzy_z conjecture states that, for m ≥ 1;

max {|am| : f ∈ F} =
2

e
:

This conjecture has been proven only for 1 ≤ m ≤ 5 (see [10, 11, 16, 18, 17, 20,
21, 22, 23, 24, 26, 27, 31, 32, 30, 33, 35]). At the same time, if we considered
the linear analogue of this question by removing the condition that f(z) 6= 0
in D; then the problem is trivial and the extremal functions f ∗(z) = eifizm give
the value 1 for the maximum. S. Ya. Khavinson developed, in the early ’60s, a
general approach to problems for non-vanishing functions in Hardy spaces that
allowed him, if not to solve the problem explicitly, to at least obtain the particular
form of extremal functions. Yet, he did not publish it until the 1970s. Moreover,
the latter work was not translated into English until 1986 (see [14]). Under his
guidance, his former student, V. Terpigoreva, quickly extended his results to
more general Orlicz-Hardy spaces in the paper [37] following her thesis [36]. She
published a complete version with proofs in 1970 (see [38]). This perhaps partly
explains why Khavinson postponed publication of his less general results until
their inclusion in his monograph ([14]) that unfortunately was never published
in Russian in book form.

Some of S. Ya. Khavinson’s results (but not the general method) were rediscov-
ered in the 70s and 80s by western authors (see [11, 32]). Yet, the attack on
extremal problems for non-vanishing functions in Bergman spaces has only just
begun (see [1, 2, 3, 4, 5]), and still, the simplest problems remain unsolved.

The layout of this survey is as follows. In Section 2, we outline S. Ya. Khavin-
son’s theory for Hardy spaces. In Section 3, we illustrate the general theory
by discussing some particular examples in Hardy spaces. Section 4 contains the
discussion of the Bergman space case. There we focus on the simplest problems
that are still unresolved; in particular, we explain in detail where S. Ya. Khavin-
son’s arguments that work so smoothly for Hardy spaces run into a wall in the
Bergman space context. We flnish with several observations and conjectures for
the Bergman spaces problem that we hope will attract more researchers to this
fleld.

Acknowledgement. The authors are grateful to Peter Duren for many helpful
suggestions improving the exposition.

2. General Theory for Hardy Spaces

Let us begin by discussing the general theory of coe–cient type extremal prob-
lems for non-vanishing functions in Hardy spaces. This discussion is based on
the work of S. Ya. Khavinson in [14]. (The results there were originally obtained
in the mid 60s, yet the original version of [14] was only published in Russian in
1981.)
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In other words, we are interested in flnding, given °0; °1; : : : ; °m ∈ C flxed,

(2.2) ‚∗p = sup

(
Re

mX

k=0

°kak : q(z) =
∞X

k=0

akzk ∈ Q∗
p

)
:

Now examine the structure of such functions q a little more closely.

It is well-known (see [7]) that every function f ∈ Hp
0 has non-tangential limits

(almost everywhere on the unit circle T) f(eit) ∈ Lp([0; 2



NON-VANISHING FUNCTIONS 5

A simple calculation shows that

(2.9) Re

ˆ
mX

k=0

°kak

!
=

1

2…p

Z 2…

0

fi(t)S(t) dt;

where

fi(t) := Re

ˆ
°0 + 2

mX

k=1

°ke−ikt

!

and S \represents" q via (2.7), that is, S(t) = p Re q(eit):

Now if fi(t) is continuous on the interval [0; 2…]; it is not hard to see that the
supremum

(2.10) sup
S∈¾

Z 2…

0

S(t)fi(t) dt

is flnite if and only if fi(t) ≥ 0 on [0; 2…]: Indeed, if fi(t) ≥ 0; then
Z 2…

0

S(t)fi(t) dt ≤
Z 2…

0

eS(t)fi(t) dt < ∞;

since fi is continuous on [0; 2…] and S satisfles the normalization (2.5). On the
other hand, suppose there were an interval I and † > 0 such that fi(t) < −† for
t ∈ I: Then we could construct a sequence of functions SN equal to −N on that
interval I and 0 elsewhere. The measures SN(t) dt certainly lie in the class ¾;
and the integrals Z 2…

0

SN(t)fi(t) dt →∞:

Similarly,

sup
”∈§

Z 2…

0

fi(t)d”(t) < ∞
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Notice that it is enough to consider S ∈ ¾ such that

1

2…

Z 2…

0

eS(t) dt = 1:

Now, the following simple inequality can be checked directly, for any u; v > 0 :

(2.13) u ln u− u ≥ u ln v − v:

Moreover, if u 6= v; then the inequality is strict. Applying (2.13) to u = fi
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functions f ∈ Hp with prescribed initial coe–cients c0; c1; : : : ; cm. The same type
of argument also applies to interpolation problems where the origin is replaced
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The authors note that for p = 1; the functions

fm(z) =
(1 + zm)2

2

are extremal for Problem (3.1) and, for all m ≥ 1;

(3.4) sup
f∈H1

0

Re

‰
f (m)(0)

m!

¾
= 1:

They also remark that uniqueness of extremals fails badly here: any function

f(z) = C

mY
j=1

(z − fij)(1− „fijz);

where |fij| = 1 and C is chosen so that ‖f‖H1 = 1 is also extremal. Note that
all of these extremals are of the general form (2.16) from Section 2. Conjecture
3.3 for non-vanishing Hardy space functions was shown to be true for m = 1 in
[6] and for m = 2 in [32].

While studying explicit solutions to linear extremal problems in Hp; the authors
in [5] considered the related problem of flnding, for p ≥ 1; m ≥ 1; and 0 < c < 1
flxed,

(3.5) max
f∈Hp

0

'
Re f (m)(0)=m! : f(0) = c

“
:

They were only able to solve this problem explicitly for m = 1: The extremals
depend on the value of c : if 0 < c < 2−1=p; then the extremal function has a
singular part and is equal to

f ∗(z) = 2−
1
p (1 + z)

2
p exp

µ
−„0

−1 + z

−1− z

¶
;

where „0 = − log(2
1
p c); while if 2−1=p ≤ c < 1; then the extremal has no singular

part and is equal to

f ∗(z) =
‡

c
p
2 + z

√
1− cp

· 2
p

:

By varying c and flnding the corresponding maximum, the authors gave another
proof of Conjecture (3.3) for m = 1: Problem (3.5) is equivalent to an interpola-
tion problem for non-vanishing functions, of flnding, for c0; : : : ; cm flxed,

inf{‖f‖p : f(0) = c0; : : : ;
f (m)(0)

m!
= cm; f ∈ Hp; f non-vanishing }:

If we flx6(:)-167(:)-167(f 7.05 0 TD[((0))-277(=)]TJ/stan/F7 11.95 Tf 12.62 0 TD[F7 11.95 Tf 5.54 -2.45 TD[(c)]TJ/F4 1 11.95 T TD[(c)]T 0.48 w 183.29 -4 -0.61 -6.4nother)g
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using a more delicate variation stemming from the seminal work in [2, 3, 4] on
the so-called minimal area problem, i.e., the problem of flnding, for b flxed,

(4.3) inf

‰Z

D
|F ′|2 dA : F (0) = 0; F ′(0) = 1; F ′′(0) = b; F univalent in D

¾
;

it was shown in [1] that the extremal f ∗ is in fact bounded in D: It was conjectured
in [1] that the extremal function f ∗ has the form (for p = 2):
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into Cm+1: Following S. Ya. Khavinson’s scheme from Section 2, it is straight-
forward to show that the image Ar := ⁄(§r) is a closed, convex, proper subset
of Cm+1
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Using the complex form of Green’s theorem together with the fact thatflflflflexp

µ
„

1 + z

z − 1

¶flflflfl = 1 a.e. on T;

we calculate

Z

D
|f ∗(z)|2 dA =

i

2…

Z

T
F ∗(z)f ∗(z) d„z

=
i

2…

Z

T
F ∗(z)f ∗(z)(−i)„z dµ

=
1

2…

Z

T

C

2
(z − 1)2 exp

µ
„

1 + z

z − 1

¶
C(„z − 1− „) exp

µ
„

1 + z

z − 1

¶
„z dµ

=
C2

2

1

2…

Z

T
(z2 − 2z + 1)(„z − (1 + „)) „z dµ

=
C2

2
(3 + 2„):

Since
R
D |f ∗(z)|2 dA = 1; we get that C =

q
2

3+2„
; where „ > 0: Substituting C

into (5.2), we obtain

(5.3) (f ∗)′(0) =

r
2

3 + 2„
e−„(1 + 2„ + 2„2):

It is not hard to see that this function of „; when „ > 0; is maximized when
„ = 1: We thus obtain

(5.4) max {Ref ′(0) : ‖f‖A2 ≤ 1 ; f non-vanishing in D} =
√

2

√
5

e
:

It is also natural then to expect that an extremal function for any m in the
problem

(5.5) max{Ref (m)(0) : ‖f‖A2 ≤ 1 ; f non-vanishing in D}
would be cmf ∗(zm); where f ∗ is the extremal for (5.4)and cm is the normalizing
constant. From this, we leap to the following rather bold conjecture, although
present evidence in its favor is not abundant.

Conjecture 5.2.

lim sup
m→∞

max
'

Re f (m)(0)=m! : ‖f‖A2 ≤ 1 ; f non-vanishing in D
“

√
m

≤
√

5

e
:

Since we still have not been able to completely solve the above problem for
m = 1;
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Conjecture 5.3.

lim sup
m→∞

⁄m

(mp+2
2

)
1
p

< 1:

Denote by ‚m the analog of ⁄m in the Hp
0 -context. A priori, of course, ⁄m ≥ ‚m:

Question. What are the asymptotics of ⁄m? Is ⁄m ∼ ‚m m1=p ?

We think that perhaps with the advances in the theory of Bergman spaces in
the last decade, the time has come for a thorough study of these fundamental
extremal problems.
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